
 
 
 
 
 
 

artG4: A Generic Framework for Geant4 Simulations 

Tasha Arvanitis1 and Adam Lyon 

Fermi National Accelerator Laboratory 
MS 357 
Batavia, IL 60510-0500 USA 
 

Correspondance e-mail: lyon@fnal.gov 

Abstract. A small experiment must devote its limited computing expertise to writing physics 
code directly applicable to the experiment. A software “framework” is essential for providing 
an infrastructure that makes writing the physics code easy. In this paper, we describe a 
framework for writing Geant4 based simulations called “artg4”. This framework is a layer on 
top of the art framework. 

1.  Introduction 
Small experiments, such as the Fermilab Muon g-2 experiment with about 125 collaborators, do not 
have the computing and software expertise found at large experiments such as CMS and ATLAS. 
Large experiments have the personnel to write their own software infrastructure that physicists use to 
code algorithms and analysis programs. Small experiments generally have a few software experts; not 
enough to create an entire software ecosystem like those from the LHC experiments. Instead, they rely 
on software frameworks from other sources. The art framework[1] developed by the Fermilab 
Scientific Computing Division, is such a framework used by several experiments, including Muon g-2, 
Mu2e, NOvA, and Darkside-50. art is also the underlying framework for LarSoft used by LBNE, 
MicroBoone, and other liquid argon neutrino experiments.  
 
 

 

                                                        
1 Current address: Harvey Mudd College, Claremont, CA 91711 USA 
 



 
 
 
 
 
 

 
Frameworks provide more than software infrastructure. They provide a mechanism for 

collaboration and doing what physicists really want to do - produce physics results. Figure 1 displays 
some of the functions of a framework system. Physics code lives within, exploiting the common 
infrastructure. For art, such physics code lives in dynamically loaded modules. Many such modules 
can be strung together and configured by the framework’s configuration system, forming an analysis 
program designed to perform a physics task. Though modules may be written by different people, they 
have to conform to the rules of the framework, and so work together.  

 
The framework provides the functionality that belong to the realm of computing experts, not 

physicists. For example, art is written by a group of C++ and framework experts at Fermilab. The 
low-level functions for i/o, dynamic loading, module dispatch, messaging and logging, data storage, 
and meta-data generation (including event provenance) need to be reliable and optimized. Computing 
experts are better equipped to succeed in those areas than particle physicists. The art team has indeed 
succeeded in writing such functionality and using the latest tools with C++ 2011. 

 
Users of such frameworks generally have two reactions. Some, typically those with more 

computing expertise, find such systems constraining. The infrastructure is hidden behind the scenes, 
they may have ideas that were not considered by the experts, they have to trust a system they didn’t 
write, and they missed out on what they consider the fun of writing the complicated code to do the 
low-level functions. Others find a framework system such as art liberating. They can concentrate on 
physics code instead of the infrastructure. The code they write is generally less complicated than the 
infrastructure code (they are using a complicated system, not writing it). They do not have to maintain 
the infrastructure code. With a framework, they can use code from others and share their code easily. 
And finally they get the services the infrastructure provides for free (such as data management).  

 
For simulations based on a system like Geant4, a framework like art is especially useful for the 

reasons listed above. But Geant4 needs to be integrated with the framework, and the integration can 
provide functionality for ease of use on its own. The topic of this article is such an integration layer 
called artg4 written by the Fermilab Scientific Computing Division for the Muon g-2 experiment. 
Below we explore the motivation and details of artg4, how it integrated Geant4 and art, and features 
that makes Geant4 easier to use. 

 

 
 

Figure 1. The functions of a framework are displayed, showing that code you write (as a physicist) 
lives within an infrastructure that you exploit. 



 
 
 
 
 
 

2.  Motivation 
 
artg4 was written in the context of the new Fermilab Muon g-2 experiment. Measurement of the 
fundamental parameter g-2 of the muon is a decades long industry. The latest result by the E821 
experiment at Brookhaven National Laboratory from 1999-2001 is a 0.54 ppm measurement and is ~ 3 
sigma away from the Standard Model prediction. As an intriguing hint of new physics, Fermilab is 
preparing to do the experiment again with quadruple the precision. If the difference between 
experiment and the theoretical prediction persists, it will be at the level of 5-7 sigma; an undeniable 
signal of physics beyond the Standard Model. Muon g-2 is a high priority experiment for Fermilab and 
is currently scheduled to start taking data in 2017. The 50’ diameter storage ring used in the E821 
experiment has been moved to Fermilab and new detectors are currently under design and test. 

 
Soon after Brookhaven completed the E821 experiment described above, several design studies 

were initiated to explore improvements to the muon storage ring for a follow-up experiment at BNL 
that never materialized. The result of these studies that remains is a Geant4 based simulation of the 
ring and detectors called g2migtrace[2]. g2migtrace is a very detailed and accurate simulation of the 
storage ring including beam injection and orbit dynamics as well as many ring and sensitive detector 
components. The Fermilab experiment adopted this software as its main tool for simulation studies.  

 
While g2migtrace proved valuable for many simulation studies, the program is a monolithic code 

with a mostly hard-coded geometry and detector configuration. Interaction with the simulation is via 
the Geant4 messenger facility and command prompt. Given the monolithic nature, altering the code to 
try new ideas involves switches and many if statements.  

 
g2migtrace includes a detailed simulation of the calorimeters used in the E821 experiment. 

Fermilab had plans to explore different calorimeter designs, and so a simulation of the reference E821 
calorimeter was desired. g2migtrace has this simulation, but it is buried in the ring code. To create 
such a simulation, a version of g2migtrace with only the calorimeter was created by introducing 
compiler flags as shown in figure 2.  

 

 
 

Figure 2. Example of detector construction code with compiler flags 



 
 
 
 
 
 

This “TESTBEAM” flag was scattered throughout the code to effectively remove all non-
calorimeter simulation lines. While this idea worked in this instance, it essentially renders the code 
unmaintainable. How would one implement a different test beam configuration? How to add new 
detectors while keeping old ones for comparison? One imagines a proliferation of compiler switches 
causing a huge mess. Clearly, a framework with modules could rescue this situation. 

3.  Design of artg4 
 
The idea behind using art and artg4 was to use a framework that could modularize the g2migtrace 
simulation. We imagined having each detector component (e.g. the ring, calorimeters, trackers, beam 
position detectors, etc) in a module. Other aspects of the simulations, such as the particle guns and 
various Geant4 actions, would be modularized as well. Having a library of such modules, a simulation 
program could be stitched together with the framework configuration system. If one wanted to 
simulate the entire ring and detectors, all of those components would be configured in the simulation. 
If one wanted a test beam of one calorimeter, that too could be accomplished by writing a 
configuration file that invoked only the necessary modules to shoot a particle at one calorimeter. 
Because g2migtrace has a huge amount of valuable detailed and accurate code simulating these 
components, we embarked on a reorganization project instead of a re-write project.  

4.  Details of art 
 

The art framework supplies all of the framework services that appear in figure 1. More details may 
be found in reference [1]. art uses a typical event model to describe physics data.  Data objects with 
information about a particular event are accessible from an event store in memory. art modules 
process these data with algorithms and plot the results and/or can store them back into the event as 
new data objects. Physics code lives in these modules that art loads dynamically. There are three 
types: producers, filters, and  analyzers. Producers and filters can access the event data and store new 
data into the event. In addition, filters return a Boolean value that can influence further processing of 
the event. Analyzers cannot write to the event and are meant for making diagnostic plots. Data are 
currently serialized by Root’s[3] i/o system.  

Modules have the expected methods to handle different points in processing, including begin job, 
begin run, processing an event, end run, and end job. An important rule is that modules must be 
independent. That is they can only pass information via data in the event. This restriction ensures that 
modules are compatible with multithreaded execution.  

A service is a globally accessible object, like a singleton, to which art enables access and is 
dynamically loaded. The object is completely generic and can do most anything, so long as it 
conforms to the restriction in the preceding paragraph. That is a module must not store information 
into a service that would be accessed by a module downstream. Any module can access any service. 
Example services are those serving Geometry information and constants, serving random numbers, 
and recording timing and memory usage information. 

art uses a configuration language called “FHICL” (Fermilab Hierarchical Configuration Language) 
which is a structured text document that specifies which modules and services are loaded, their 
parameters, and other configuration information (e.g. module ordering).  

5.  Geant4 in art 
 

Adapting Geant4 code into art leads to interesting challenges. Geant4 maintains its own event store 
and event loop. The first step in integrating Geant4 with art is to have an art module call parts of the 
beamOn method in G4RunManager in order to take control of the event loop. Geant4 must be 
configured with detectors constructed and actions specified. The naïve implementation would be to 
split detectors and actions into different modules, but then those modules would be communicating via  



 
 
 
 
 
 

 
Figure 3. The structure of detectors. 

 
the Geant4 event store instead of the art event store. Such communication violates the rules imposed 
by art. A better implementation involves having one producer module and dynamically loaded 
services to handle the different parts of the simulation. Because there is only one module dealing with 
Geant4 information, the art rule is not violated.  This one-producer many-services structure will be 
used in artg4.  

 
There are two basic pieces to a Geant4 simulation: Detectors and Actions. g2migtrace constructed 
detectors with code as opposed to GDML files. We decided to maintain that functionality. 
Constructing a detector involves defining its shape, creating a logical volume by adding material 
information, and finally creating a physical volume from the logical by adding placement information. 
Actions are hooks into Geant4 processes. For example, one can have user code called whenever a new 
event is started, whenever a track is created, and when the first particles of the simulation are 
generated.  

 
For detector construction, the user writes objects as services that inherit from our DetectorBase 

class, as shown in figure 3. DetectorBase registers the detector object with a cataloging service so that 
the system need not know about all of the detectors a priori. One must override the member functions  
doBuildLVs and doPlaceToPVs to ensure that the steps of creating logical and physical volumes are 
followed. Each detector has parameters of category and motherCategory to define the detector 
hierarchy (the “world” detector has a blank motherCategory). If a detector has a sensitive element and 
produces data, those data must be converted from Geant4 objects into objects compatible with storage 
in the art event (e.g. without internal pointers). That conversion happens in the 
doFillEventWithArtHits method. The doCallArtProducts is a special one to alert art to expect data of 
the specified type. 

 
Actions are also specified as services that inherit from a particular ActionBase class (for example 

EventActionBase). Member functions to override depend on the ActionBase chosen.  
 
With this scheme, nearly all of the complicated sensitive detector code remains unchanged. These 

base classes and other infrastructure code make up artg4.  

6.  Adapting g2migtrace to art with artg4 
 

DetectorBase

doBuildLVs
doPlaceToPVs

doCallArtProduces
doFillEventWithArtHits

World Ring Calorimeters Trackers



 
 
 
 
 
 

The main requirements for adapting g2migtrace to art were to have a modular simulation that is 
defined by the configuration file. These demands were easily achieved by artg4. As a practice, several 
members of the computing group converted the Geant4 N02 and N04 examples to the artg4 
framework. These studies were a great success and so a group of about five people tackled converting 
the g2migtrace code. It took us about 2 months to compete this task and the results were very 
successful. Figure 4 shows a section of the storage ring along with calorimeters constructed with the 
simulation.  
 

One of the improvements we wanted to realize was the ability to constructed test beam or other 
simulations without massive changes to the code (e.g. no compiler flags). We were in fact able to 
accomplish this goal quite easily with art and artg4 and the configuration language. Figure 5 shows a 
snip-it of the configuration file for a “Fiber Harp” (beam position monitor) test beam along with a 
visualization. The detector elements not needed for this simulation are not configured and so are not 
loaded by art. The FiberHarp service is the same one as is used by the ring simulation, but several 
parameters are overridden to create the test beam. The code in the FiberHarp service remains 
unchanged. 

 

7.  Conclusions 
 
We were able to realize our goal of having an extremely flexible simulation system based on art. 

The flexibility and ease of use that the art framework provides enables many non-computing experts 
to participate in simulation writing and studies. Indeed we now have a group of about fifteen people 
actively using artg4 in order to do simulations and studies. Sharing code and collaborating is very 
simple and is proving to be extremely fruitful for the experiment.  

 
We wish to acknowledge the support from the Fermilab art developers and the Muon g-2 

collaboration. The Fermi National Accelerator Laboratory is operated by Fermi Research Alliance, 
LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. This 
contribution is FERMILAB-CONF-13-480-CD.  

 
Figure 4.  A section of the Muon g-2 storage ring with calorimeter stations. 

 



 
 
 
 
 
 

 
 
Figure 5. A fiber-harp test beam with only changes to the configuration file and not the code itself.  

 
 

References 
[1] Green, C. and Kowalkowski, J. and Paterno, M. and Fischler, M. and Garren, L. and others 

2012 J. Phys. Conf. Ser. 396 022020 
[2] g2migtrace (unpublished) was written by Kevin Lynch (currently at CUNY York College, 

Jamaica, NY, USA)  and Zach Hartwig (currently at MIT, Boston, MA, USA) 
[3] Rene Brun and Fons Radmakers 1997, Inst. & Meth. in Phys. Res. A 389 81-86 
 


